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Lecture 15: Geometry & surfaces: depth & shape

Initialize

‡ Spell check off

In[1]:= Off@General::spell1D;

In[2]:= Off@General::spell1D;

In[3]:= << VectorFieldPlots`;

In[4]:= SetOptions@ArrayPlot, ColorFunction Ø "GrayTones", DataReversed Ø True,
Frame Ø False, AspectRatio Ø Automatic, Mesh Ø False,
PixelConstrained Ø 81, 1<, ImageSize Ø SmallD;
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Last time

‡ Extrastriate cortex--overview

‡ Scenes from images, scene-based modeling of images

Today

‡ Geometry, shape and depth: Mainly representation & generative models

‡ Lambertian model

Surfaces, geometry & depth

Introduction
Recall two major tasks of vision: "Knowing what is where just by looking"--Marr's definition of vision. 

Today: How can vision extract geometrical information about the world? Important for what and where.

General issues: Between-object, viewer-object, within-object geometry.

Coarse vs. dense estimations of geometrical relations. 

Two basic classes of geometrical information for vision

‡ Scene geometry--Spatial layout, large-scale surface structure

Where are objects relative to the viewer? 

Where are they relative to each other? Relative to a frame? (e..g. ground plane)

‡ Object geometry--Surfaces & shape, small scale surface structure
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‡

Object geometry--Surfaces & shape, small scale surface structure

How can we describe objects themselves in terms of their geometry--shape?

What is the relationship of parts of objects to each other? 

Extrinsic vs. intrinsic geometrical descriptions

Where are objects? Spatial layout

‡ Absolute

Distance of objects or scene feature points from the observer. 

"Physiological cues": Binocular convergence--information about the distance between the eyes and the angle converged by 
the eyes. Crude, but constraining. Errors might be expected to be proportional to reciprocal distance. Closely related to 
accommodative requirements.

"Pictorial cue"--familiar size

Pattern of errors can depend on how human absolute depth is assess (e.g. verbal estimates vs. walking) (Loomis et al., 
1992)

Important for reaching. (Marrotta and Goodale, 2001).

‡ Relative

Distance between objects or object feature points. Important for scene layout, planning actions, navigation.

Processes include: Stereopsis (binocular parallax) and motion parallax. 

Also information having to do with the "pictorial" cues: 

occlusion, transparency, perspective, proximity luminance, focus blur, also familiar size & "assumed common physical 
size", "height in picture plane", cast shadows, texture & texture gradients for large-scale depth & depth gradients
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‡ Examples of pictorial information for depth

For some depth from shadow illusions, see: http://gandalf.psych.umn.edu/~kersten/kersten-lab/demos/shadows.html

‡ More later

...over a dozen cues to depth. Later, we'll study theories of integration (e.g. stereo + cast shadows). Also theories of 
cooperativity (e.g. motion parallax <=> transparency).

Vision for spatial layout of objects, navigation, heading and for reach

What is geometrical shape?
Important for determining what an object is--shape-based recognition, rather than where it is. 

(Bear in mind other information for object identity, e.g. material, context)

‡ Contours & region information

1D "lines" vs. 2D "fields", object contours vs. region information

2D and 3D shape
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‡ Cues to shape: Contour based

Contour based--contours at object boundaries (depth discontinuity) and at sharp object bends (orientation discontinuities, 
smooth self-occluding contours). 

The Kanizsa triangle below illustrates contours at apparent depth discontinuities. The illusion illustrates the effectiveness 
of contours. Cartoons illustrate the effectiveness of line-drawings.
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The contours below are interpreted as self-occluding contours, where the surface smoothly wraps out of view. Is the 
"worm" flat or round? Is the vertiical rod flat or round?

http://journalofvision.org/3/4/4/article.aspx 

‡ Cues to shape: Region based

Region based: shading, texture gradients, disparity gradients & fields, motion parallax fields

‡ Example of shading & shape
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‡ Example of texture and shape

 http://www.ritsumei.ac.jp/~akitaoka/index-e.html 
Later, we'll look at the interactions between contour and region information in the perception of shape.

‡ Local vs. global shape. 

Global measures: aspect ratio, compactness

Dense vs. coarse fields. Interpolation.

Local shape fields & dense estimation

‡ From dense depth to shape, normals & curvature

Below we will start with a mathematically simple representation of depth from the viewer: z = f(x,y), and show how to 
derive a simple dense shape measure in terms of the rate of change of depth from the viewer. This a viewer-centered depth 
representation. Later, we will discuss intrinsic object shape measures such as curvature.

An issue that is perceptually important and of theoretical interest is: How to go from a set of sparse measurements in a 
region to a dense field. This is a problem of surface interpolation. We'll see more of that later.

Local dense representations of surface regions
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Local dense representations of surface regions

Shape-based generative modeling of images
In terms of understanding image information, it is simplest to start with a discussion of dense local representations of 
shape and understand how shape changes influence image intensity changes.

There are two aspects to image formation. The first has to do with geometrical manipulations including projection (which 
we will study later via matrix transformations on homogeneous coordinates). The second aspect is the determination of 
intensity at each image point from a scene description. In order to understand shape from shading, we need to understand 
the constraints implicit in the forward optics problem of  "shading from shape"--i.e. the generative model. Here we can 
benefit from research in attempts in computer graphics to obtain photorealism.

Image formation constraints can be obtained by understanding how material properties, shape, and illumination interact to 
form an image. This is part of the field of computer graphics.  The quest for physical realism in reasonable computing time 
is still a challenge in computer graphics (Greenberg, 1999; for eary history, see: Blinn, J. F., 1977; Cook, R., & Torrance, 
K.,  1982). 

One of the earliest models is the Lambertian shading equation which describes how intensity is distributed for curved 
matte surfaces with constant reflectance (e.g. arbitrarily defined as 1):

E is a vector representing light source direction. If at infinity, it has just two degrees of freedom and is constant over the 
surface. If light source intensity is normalized, then the E vector is a unit vector. Alternatively its vector length can be used 
to  indicate the strength of the illumination.

‡ An example of a simple computer graphics lighting model--"matte" & "plastic" world

An elaboration of the lambertian model for shading, based in part on physics, and in part on heuristics and "beauty pag-
eant" observation, describes image luminance in terms of of a lambertian, specular, and ambient light components:

where the lower case r's are the reflectivities (0 means no reflectance of the illumination, and 1 means complete reflec-
tance), and the unit vectors   E, N, and  L, point in the directions of the light source, surface normal, and viewpoint respec-
tively. Ep and Ea, are  the strengths of the point source, and ambient illumination, respectively.   R points in the direction 
that a ray would go if the surface was a mirror, i.e. purely specular. This form for the specular term is due to Phong, who 
pointed out that  n could be used to control the degree of specularity. High values of n correspond to a perfect mirror 
surface, values between 1 and 200 are typically used to add some gloss to the rendering. Surfaces then look more plastic, 
or metallic. 
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where the lower case r's are the reflectivities (0 means no reflectance of the illumination, and 1 means complete reflec-
tance), and the unit vectors   E, N, and  L, point in the directions of the light source, surface normal, and viewpoint respec-
tively. Ep and Ea, are  the strengths of the point source, and ambient illumination, respectively.   R points in the direction 
that a ray would go if the surface was a mirror, i.e. purely specular. This form for the specular term is due to Phong, who 
pointed out that  n could be used to control the degree of specularity. High values of n correspond to a perfect mirror 
surface, values between 1 and 200 are typically used to add some gloss to the rendering. Surfaces then look more plastic, 
or metallic. 

The R+K term is a "fudge" term, reflecting common experience (not physics) in which surfaces (of the same reflectance, 
and orientation) that are farther away from the viewer are dimmer. K is a constant, and R is the distance from the object to 
the viewpoint. This is a weak, but nevertheless useful constraint for vision. A closely related idea is "proximity luminance" 
cues in vision (see Dosher, B. A., Sperling, G., & Wurst, S. A., 1986). Our viewpoint is likely to be close to the light 
source direction than opposite it. 

For more on rendering, including physically correct phong-like model, see: Larson, G. W., & Shakespeare, R. 
(1998). 

Note that as is, there are severe limitations to this image formation constraint. One of the major problems is  the absence of 
cast shadows. Physically based models become much more complicated when one has to take into account multiple 
reflections. (See Foley, J. D., van Dam, A., Feiner, S. K., & Hughes, J. F., 1990; Fundamentals of Computer Graphics by 
Peter Shirley et al.). 

The above equation also does not take into account how light bounces between objects (mutual illumination or indirect 
lighting)--the ambient "fudge" term is the crude approximation to model the overall effect of mutual illumination.

Material properties can be much more complicated than Lambertian plus a Phong specular term. Illumination patterns can 
also be much more complicated.

More on the complexities of the image formation model latter.

‡ Preview of shape-from-shading

Later we will study the "shape-from-shading" problem. If one represents shape in terms of a dense distribution of surface 
normals, then a simplified version of the formal problem is to estimate N(x,y) given data L(x,y) such that the following 
simplification of the above equations holds:

As it stands, this set of equations (one for each location x,y) is underconstrained or "ill-posed"--for every image intensity 
L, there are two numbers to estimate for N. Assuming the light source is a point at infinity simplifies things (same two 
numbers E for all surface points). Assuming surface smoothness and integrability also constrains the solution. But more on 
this later.

Representing shape
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Representing shape
A central issue in object perception is how the shape of an object is represented by the visual system. Shape may be 
represented in a variety of ways that depend on the visual task and the stages of processing in a given task. Questions 
about shape representation can be classified along several dimensions. Two central questions have to do with whether the 
representation is local or global, and whether the representation depends on viewpoint.

Global and local representations of shape.  A global representation of solid shape consists of a set of parameters or 
templates that describe a class of surfaces or ``parts". Several theories of object recognition assume that objects can be 
decomposed into elementary parts. These parts are drawn from a limited set of elementary shapes, such as generalized 
cylinders (Marr and Nishihara, 1978), geons (Biederman, 1987) or superquadrics (Pentland, 1990).  

A representation in terms of parts is global in the sense that the change of each parameter which describes a part will affect 
the whole shape.  In comparison, a local representation is a dense characterization of shape, such that a change of a 
parameter at one spatial location will not affect the shape at another location. A surface normal vector at each surface 
location is an example of a dense representation.

Viewpoint dependency in shape representations. A second major question is whether the shape representation depends on 
viewpoint. This debate has arisen in the context of models of object recognition  (Tarr & Bülthoff, 1995). Local viewpoint 
dependent descriptors such as slant and tilt have been studied by a number of investigators (Todd & Mingolla, 1983; 
Mingolla & Todd, 1986; see below). But view-dependent descriptors have disadvantages for some tasks. One problem 
with slant and tilt is that the local slant of an oriented plane varies with viewpoint. So we have a discrepancy between 
apparent global flatness and the local variation in slant (Mamassian, 1995).  For part-based object recognition, it would 
seem best to do part extraction using local view-independent descriptors. It is also reasonable that view-independent shape 
descriptors could support other types of visual processes. For instance, the manual prehension of an object requires one to 
locate stable grasp points on the surface, a task which only makes sense in an object-centered frame of reference.  Neverthe-
less, the visual information is of course firstly described in a viewer-centered frame of reference, and the fundamental 
issue then becomes the tranformation of viewpoint dependent into viewpoint independent representation (Andersen, 1987). 
One local, intrinsic representation of solid shape describes the second order depth variation of the surface (Besl and Jain, 
1986), or equivalently, the first order orientation variation (Rogers and Cagenello, 1989).  For more on shape representa-
tions, see Koenderink (1990).

Gradient space & surface normals
Imagine a small planar surface patch.

One way of representing shape locally and with respect to the viewpoint of the observer, is to use gradient space:
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Let ϕ(x,y,z)=f(x,y)-z  Then,

is a normal vector to the surface at (x,y,f(x,y))  :

Gradient space is defined by the mapping of (p,q,-1)-->(p,q), ie the orthographic projection.

Slant and tilt
Again, imagine a small planar surface patch. 

Shape can also be described by slant and tilt. 

Used for both local dense estimation, and global near-planar surface attributes, e.g. for large-scale layout.

Let N be the surface normal expressed in terms of p and q:
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The direction of steepest descent is the tilt:

Note: Sqrt[q^2+p^2] is the rate of change of z in the direction of maximum change (steepest descent).

The slant is:

How to choose a representation?
How do we know what is the best representation to use? Slant and tilt seem to be important from a perceptual point of 
view. 

One reason gradient space is useful is that it is related to relative depth in a straight forward way:

We can easily get back to distance by integrating:

gives the relative distance, and a constant is lost in the process.

Other local representations (Koenderink, 1990;  Mamassian & Kersten 1996, Mamassian, Knill & Kersten, 1996).
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gives the relative distance, and a constant is lost in the process.

Other local representations (Koenderink, 1990;  Mamassian & Kersten 1996, Mamassian, Knill & Kersten, 1996).

More on the Lambertian model: Using Mathematica to go from depth to 
normals to image intensities

This section gives you some practice using the Lambertian scene-based generative model.

Range data defines surface list  

‡ Range data to define rface list -- BIG 64x64 file. 

Just initialize this cell--don't bother opening cell (from: http://sampl.eng.ohio-state.edu/)

If you want to read in a different file, use the Import[ ] function in the Appendix

Intensity in a DensityPlot is proportional to the z (depth) from the camera

In[6]:= size = Dimensions@rfaceD@@1DD; hsize = size ê 2;
ArrayPlot@rfaceD

Out[7]=

Fit continuous 3D function to range surface list

‡ Spline-fit the first surface face to define a continuous function

In[8]:= crface = ListInterpolation@Transpose@rfaceDD;
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Plot 3D surface

In[9]:= g1 = Plot3D@crface@x, yD, 8x, 1, size<, 8y, 1, size<, PlotPoints Ø 64,
PlotRange Ø 80, 255<, Mesh Ø False, AxesLabel Ø 8"x", "y", "z"<,
ViewPoint Ø 81, -1, 3<, AspectRatio Ø 1,
PlotRange Ø 881, size<, 81, size<, 80, 255<<, ImageSize Ø SmallD

Out[9]=

crface@32.2, 32D

249.144

Calculate surface normals of  surface

In[10]:= Clear@x, yD

In[11]:= nx@x_, y_D := Evaluate@D@crface@x, yD, xDD;
ny@x_, y_D := Evaluate@D@crface@x, yD, yDD;

nx[x,y] is  ∂z
∂x

, and similarly for ny. The rate of change of depth range is greatest as the face slopes away from the 

viewpoint:
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In[16]:= DensityPlot@nx@x, yD, 8x, 1, size<, 8y, 1, size<, Mesh Ø False,
Frame Ø False, ImageSize Ø SmallD

Out[16]=

As we saw for intensity, we can also make a plot of the magnitude of the gradient:

DensityPlot@Sqrt@nx@x, yD^2 + ny@x, yD^2D, 8x, 1, size<, 8y, 1, size<,
Mesh Ø False, Frame Ø False, ImageSize Ø SmallD;

Out[14]=

Lambertian rendering: specification for normals, light, reflectance 

‡ Unit surface normals

Normalize the surface normal vectors to unit length:
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In[51]:= normface@x_, y_D := -8nx@x, yD, ny@x, yD, 1< ê
Sqrt@nx@x, yD^2 + ny@x, yD^2 + 1D;

‡ Here is a 2D sparse plot of the x and y components of the surface normals

In[18]:= VectorFieldPlot@8normface@x, yD@@1DD, normface@x, yD@@2DD<,
8x, 1, size<, 8y, 1, size<, PlotPoints Ø 30D

Out[18]=

‡ We can also plot the unit surface normals on the surface itself in 3D

In[32]:= facearray =

Flatten@Table@N@88x, y, crface@x, yD<, 5 * normface@x, yD<D,
8x, 1, size, 2<, 8y, 1, size, 2<D, 1D;
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In[39]:= ListVectorFieldPlot3D@facearray, VectorHeads Ø True,
ViewPoint Ø 81, -1, 3<, AspectRatio Ø 1,
PlotRange Ø 881, size<, 81, size<, 80, 255 * 2<<, BoxRatios Ø 81, 1, 3<D

Out[39]=

‡ Point light source direction

Let's combine plots to show the direction of the illumination vector

s is a vector specifying the direction of the light source. The length can be used as to represent intensity. We normalize it.

In[52]:= s = 8100, 100, 10<; s = N@s ê Sqrt@s.sDD

Out[52]= 80.705346, 0.705346, 0.0705346<

We can try to plot the light source vector together with the surface
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In[61]:= Manipulate@
s = 8s1, s2, s3<;
s = N@s ê Sqrt@s.sDD;
g3 = ListVectorFieldPlot3D@888size ê 2, size ê 2, 0<, 60 * s<<,
ViewPoint Ø 81, -1, 3<, AspectRatio Ø 1,
PlotRange Ø 881, size<, 81, size<, 80, 255<<, VectorHeads Ø True,
ImageSize Ø SmallD, 8s1, -10, 10<, 8s2, -10, 10<, 8s3, -10, 10<D

Out[61]=

s1

s2

s3

In[62]:= s = 8100, 100, 10<; s = N@s ê Sqrt@s.sDD;
g1 = Plot3D@crface@x, yD, 8x, 1, size<, 8y, 1, size<, PlotPoints Ø 64,

PlotRange Ø 80, 255<, Mesh Ø False, AxesLabel Ø 8"x", "y", "z"<,
ViewPoint Ø 81, -1, 3<, AspectRatio Ø 1,
PlotRange Ø 881, size<, 81, size<, 80, 255<<D;
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In[64]:= g12 = Show@8g1, g3<D

Out[64]=

‡ Reflectance

The surface is modeled as having constant reflectivity of 1--i.e. "white".

In[65]:= a@x_, y_D := 1;

‡ Lambertian rendering model for first surface

In[74]:= ss = 8100, -100, 10<; ss = N@ss ê Sqrt@ss.ssDD;
imageface@x_, y_D := a@x, yD * normface@x, yD.ss;
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Render  face surface

In[76]:= DensityPlot@imageface@x, yD, 8x, 1, size<, 8y, 1, size<, Mesh Ø False,
PlotPoints Ø 32, Frame Ø False, ImageSize Ø SmallD

Out[76]=
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Next time

‡ Shape from X, shape from shading
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